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SUMMARY 

This paper develops a spatial marching method for high-speed flows based on a finite volume approach. The 
method employs the reduced NavierStokes equations and a pressurr splitting in the streamwise direction based on 
the Vigneron shategy. For marching from an upstream station to one downstream the modified five-level Runge- 
Kutta integration scheme due to Jameson and Schmidt is used. In addition, for shock handling and for good 
convergence properties the method employs a matrix form of the artificial dissipation terms, which has been 
shown to improve the accuracy of predictions. To achieve a fast rate of convergence, a local time-stepping concept 
is used. The method retains the time derivative in the governing equations and the solution at every spatial station 
is obtained in an iterative manner. 

The developed method is validated against two test cases: (a) supersonic flow past a flat plate; and (b) 
hypersonic flow past a compression comer involving a strong viscous-inviscid interaction. The computed wall 
pressure and wall heat transfer coefficients exhibit good general agreement with previous computations by other 
investigators and with experiments. 

KEY WORDS: spatial marching methods; reduced Navicr-Stokes equations; explicit methods, Runge-Kutta method; hypersonic 
flow; supersonic flow 

1. INTRODUCTION 

Many of the practical flows of interest are complex and threedimensional. The search for efficient 
methods to compute them continues. Time-marching methods have been widely used for the purpose, 
especially for compressible flows. Using these methods, one advances the solution at every point in a 
domain over several time steps or iterations until convergence or a steady state solution is reached. 
Such a procedure requires substantial computing time, especially for threedimensional flows. 
However, if one considers supersonic or hypersonic flows with a dominant direction, spatial marching 
methods seem to be effective and more efficient.’-’ Here one makes use of spatial stations (lines along 
which x = const. in a typical two-dimensional flow) and marches from one station to the next one 
downstream, obtaining convergence at each. These methods are found to be almost an order of 
magnitude faster than time-marching methods6 and this is seen to be a big advantage in computing 
threedimensional flows. 

Spatial marching methods exploit an important property of high-speed flows that any upstream 
influence in them is limited to thin boundary layer regions, leading to a substantial simplification of the 
computing procedure. Further, the usage of reducedpambolized Navier-Stokes (RNS) equations, 
which are obtained by dropping the streamwise viscous terms h m  the Navier-Stokes equations, is 
another characteristic feature of these methods. 

Realizing their advantages, there has been considerable progress in the development of spatial 
marching methods.’* For a comprehensive review of these methods the reader is referred to Reference 
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1. Considering some of the previous works closely related to the present study, Lawrence er a1.’ have 
employed an upwind algorithm based on Roe’s scheme” to compute two-dimensional flow fields. The 
method is implicit and second-order-accurate in the non-marching direction. Korte and McRae3 also 
employ Roe’s flux difference splitting, but their method is explicit and uses the MacCormack” scheme 
for marching. Both two- and three-dimensional flows have been computed using the resulting method. 
Siclari and Del Guidice’ employ a semi-finite volume approach based on the Runge-Kutta scheme to 
compute three-dimensional inviscid flows. Harvey et al.’ use solution-adapted grids with the flow 
solver developed by Lawrence et al.: while Chang and Merkle* bring out the relationship between 
flux-vector-splitting and parabolized schemes. An analysis of the errors and convergence 
characteristics of iterative schemes for spatial marching is carried out in Reference 12. 

Most of the spatial marching methods use implicit algorithms to march the solution. In contrast, the 
present author has been developing an explicit method for two-dimensional The method 
uses the modified Runge-Kutta scheme due to Jameson and Schmidt” to march the solution from an 
upstream station to a downstream one. It is characterized by the fact that the time derivative term in the 
governing equation is not dropped as is usual with spatial marching methods. Instead, the time step 
term At  acts as a relaxation parameter, thus bringing the method within the itemtive category.” In the 
earlier versions of the method a finite difference strategy was used along with artificial dissipation 
terms patterned after Jameson and Schmidt.” The method has been applied to compute shock- 
boundary layer interaction in a supersonic flow4 and hypersonic flow past compression comm13*14 

The advantages of using an explicit method have been welldocumented in the literature (see e.g. 
Reference 3). It must be pointed out that these methods do have disadvantages-time step limitation 
and the consequent large CPU time requirement being the most important. However, the speed of 
convergence does improve when the explicit methods are used in conjunction with available 
convergence acceleration devices. 

The present method differs from the one described p r e ~ i o u s l y ~ ~ ’ ~ ~ ’ ~  in many ways. Here we employ 
a finite volume approach to cany out the computations entirely in the physical plane and avoid the 
calculation of the Jacobians of the transformation. The other important feature of the work is the 
implementation of a matrix form of the artificial dissipation tenns, which has been shown to be 
effective in improving the accuracy of predictions, especially for high-speed flows.’6 

In the present work the spatial marching method has been applied to compute two test cases 
frequently used to validate the codes. The first deals with supersonic flow at Mach 2 along a flat plate’ 
and the second is the well-known test case involving Mach 14-1 flow past a 15” compression comer 
due to Holdern and Mo~el le . ’~ 

The outline of the rest of the paper is as follows. Section 2 discusses the governing equations. The 
computational method employed is presented in detail in Section 3. The test cases, boundary 
conditions and computed results are discussed in Section 4 along with grid convergence studies for the 
hypersonic flow problem. 

with encouraging results. 

2. GOVERNING EQUATIONS 

The governing equations are the two-dimensional, unsteady form of the Navier-Stokes equations. In 
Cartesian co-ordinates they are written as 

(1) 
aw q~~ - FJ qci - GJ 
at 

= 0, 
ay 

+ ax -+ 
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where 

a u a v  
a,, = L 2 (2 - ;i;>, Re, 3 

F, = G, = 

0 

TXY 

ayy = L z (2 - E), r x y = q - + - > ,  a u a v  (4) 

Re, 3 Rem @ ax 
U aT - 1 aT P 1 

qx = Re, ( y  - l)MZ,Pr x ' qy = Re, (y - l)WmPr @ a 

The equations have been non-dimensionalized in the following manner (the dimensional quantities 
are denoted by a tilde): 

where I. is the reference length. The freestream Reynolds number Re, is given by Re, = fifi,L/P,. 
The coefficient of viscosity p is calculated using the Suthdand equation 

p = T3I2 1 + 110.4/i;, 
T + 1 10.4/?b, * 

Note that in the above expressions the Randtl number Pr is assumed to be a constant Further, the 
temperature is now given by T = yM&p/p. 

In accordance with the RNS approximation, the streamwise viscous terms are dropped while 
computing a,,, ayy and fXy. 

2.1. Pressure splitting and evaluation ofj7uxe.s 

The spatial marching methods are strictly valid for flows with no upstream influence. However, in 
viscous flows such as the ones considered here, there are subsonic portions of the boundary layer 
wherein the signals do propagate upstream. As a consequence, the spatial marching solution procedure 
is not well-posed and what are called deparltcre solutions may result. Various methods have been 
suggested in the literature to suppress these solutions. Of these we employ the Vigneron pressure- 
splitting technique.'* The splitting for the present application (i.e. a finite volume one) may be 
described as follows. 
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,/-I -.__- I------ 
Figure 1. mid finite volume 

Consider a typical control volume set-up as shown in Figure 1. To implement the finite volume 
procedure, one has to determine the fluxes at the interfaces of the cell and its neighburs, i.e. at a 
location such as ( i  + f , j ) .  Usually this is done by first calculahg the value of W as an average in the 
form W , + l , 2 , j = f ( ~ , j + ~ + I J ) .  However, inspatialmarchingprocedurcs,wherethefluxesinthe 
marching direction are upwinded, we have 6, 112,j = 6i,j and the pnssure at the interface is 
determined as 

Pi+ 1/2.j = 0Pi . j  + (1 - obi+ I,]? (7) 

where the parameter o is given by 

o = m i n  [ 1, 1 + ;%4J 

Here Mc is the local streamwise Mach number, while Q is a factor that takes into account the non- 
linearities not included in the analysis2 and is taken as 0.7 in the present work. Further, the term 
(1 - o)pi + I,j  in (7) is to account for any upstream influence in the subsonic portions of boundary 
layers. The present method employs a single sweep through the domain and accordingly this term is 

In the non-marching direction, i.e. at the top and bottom faces of the cell (say at (i.j + i)), the fluxes 
are evaluated by averaging the values of W of the adjacent cells (i.e.j andj  + 1). Note that the pressure 
splitting influences the inviscid fluxes only. The required viscous fluxes across the cell faces are 
computed directly in the physical plane by evaluating the first derivatives (e.g. aT/$y) in a typical finite 
volume manner. 

dropped. 

3. COMPUTATIONAL METHOD 

The first step in the numerical solution procedure consists of reducing the given governing equation to 
an or- differential equation by choosing a suitable discretization for the spatial derivatives, which 
for the present case may be described as follows. Consider a typical finite volume as shown in Figure 
1. If Q denotes the flux through any of the faces of the control volume and A denotes the area (of the 
control volume), then the governing equation (1) reduces to 

where the summation is over the faces of the control volume (see Figure 1). We apply the modified 
Runge-Kutta to solve the above equation. It may be pointed out that in spatial marching 



EXPLICIT FINITE VOLUME SPATIAL MARCHING METHOD 125 

applications it is usual to drop the d(A W ) / d t  term in (9). However, we retain the term and inkgrate the 
above equation at every spatial station. Thus in the present procedure, at any spatial station i, W ( i , j )  is 
first set equal to W(i - 1, j )  for every cell in the jdircction (i.e. the non-mmhing direction) and the 
solution is iterated using equation (9) till a convergence criterion (descritd later) is satisfied. In effect, 
the time step term At behaves like an iteration parameter and is calculated according toI9 

The modified Runge-Kutta method may be summarized as follows. If W" is the solution at r = to, 
then Wn+', the solution at ro + At ,  i.e. after one iteration, is given by (indices i and j  omitted for 
convenience) 

where R is the number of levels used in the integration procedure. The pnsent work has k = 5 and the 
coefficients a are $, i, g, f and 1. 

3.1. Ariificial dissiption 

For stability near shocks and for better convergence p r o p e s  the pnsent method needs artifical 
dissipation and this is provided in a flow-adapted manner.' Accordingly, equation (9) is replaced by 

d -(A W) + "E4 [ H F ,  G) - D] = 0. 
dt " " = l  

The dissipation term D m the above equation is a blend of second- and fourth-order differences and is 
quired only in the non-marching direction in the pnsent application. For the interface between cells 
( i ,  j) and ( i ,  j + 1) it is given by (index i has been suppressed) 

where I is proportional to the spectral radius of the Jacobian matrix (-AyaF/aW + AxaG/aW, where 
Ax and A y  are the intercepts made by the cell face upon the co-ordinate axes), Ay and Vy are the 
forward and backward differences in the y-direction respectively and d2) and d4) are the flow-adapted 
coefficients defined in Reference 16. This form is termed a scalar model of dissipation, taking into 
account that I is a scalar, and was the one used in the previous vmions of the present method. It may 
be observed that the dissipation nteded for each of the governing equations is scaled with the same 
factor I The results obtained using this model were generally good but the resolution of some of the 
important features of the flow seemed inadeq~ate.'~ To improve the predictions, this form of 
dissipation is now replaced by a matrix form where a matrix (closely related to the Jacobain matrix) is 
used in place of 1. The studies by Swanson and M e l 1 6  and Swanson et &.I9 indicate! that the 
accuracy of predictions and the resolution of flow f#ltures m substantially better with the matrix form, 
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especially at high Mach numbers. A brief description of this form is given below and details can be 
found in the above references. 

The most important change in the artificial dissipation terms consists of replacing the 1 term in (1 3) 
bY 

where 

T =  

In the above equations a is the speed of sound and u and v arc the average velocity components on the 
cell face. The other terms in the equations are given by 

AX 
K =  -AY 

JW + A?) ’ J<Ax’+AY)’  
ux = P B = - ,  

J 2 a  

The significance of the terms T and T-’ lies in that these contribute to the similarity relationship 
aF aG 

-AY- + AX- = TEVT-I, aw aw 
where EV is a diagonal vector of the eigenvalues, which for the present governing equations are Vc, 
Vc, Yc + a,/(& + AY) and Vc - a,/(& + AJ). Here Vc is the flux velocity given by 
Yc = - A p  + Axv. The matrix form of the dissipation replaces EV by 

A = diag(&, i2, n3, j4), (17) 
where 

& = max[lVcl, C. n], 
(1 8) 

1, = =[I Vcl, C * n1, 
1 3  = m a x [ l V ~ + a J ( ~ + A ~ ) I , C . n ] ,  i 4  = m a x [ l V c - a J ( ~ + A ~ ) 1 , 6 . n ] .  

Here n = I Vcl + a,/(& + A?) is the maximum eigenvalue. Thus we see that the dissipation for 
each of the governing equations is scaled with a which is the greater of the eigenvalue for the 
equation and 6 times the maximum eigenvalue; is a coefficient chosen to give a good definition of 
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I = -  ' 1  

2 

Figure 2. Finite volum cells near tbe boundary 

flow features such as shocks and for good comeqence and is set equal to 0.2 in the present 
application. 

The other important terms in (1 3) are given by 

It may be pointed out that in (19) the term d2) is zero in regions where the pressure distribution is 
uniform and non-zero in regions where there is a strong pressure gradient. Thus the term d2) in (1 3) is 
activated near shocks and similar features. The influence of 6 in (1 9) is discussed in Reference 16 and 
it is chosen to give a good definition of shocks (the present application used a value of i). The 
parameter K(4) is about and is chosen for good convergence of the solution. Another feature that can 
influence the convergence properties of the method is the manner in which the differences that make up 
the artificial dissipation terms near the boundaries are calculated. In this study we follow the 
suggestions in Reference 16 and impose (see Figure 2) 

(AW)j=1/2 = 2(AWj=3/2 - (AR?j=5/2. (20) 

It may be noted that the boundary conditions determine the flow variables at the locationj = 1. The 
artificial dissipation terms are further weighted by a factor ym as detailed in Reference 20 and are 
evaluated after the first, third and fifth stages of the Runge-Kutta scheme (see equation (1 1)). 

4. RESULTS AND DISCUSSION 

The spatial marching method developed in the previous sections is applied to compute two test cases: 
(a) supersonic flow over a Aat plate; (b) hypersonic flow past a compression comer. Both flows are two- 
dimensional and laminar and in both flows the wall temperature is held constant. Each of these flows 
was computed by starting with freestream conditions at x = 0 and marching downstream. Very fine 
s tep  (Ax about 0400 1) were taken close to the leading edge for both problems and near the comer as 
well for the hypersonic flow problem. At the other locations the spatial steps taken were much coarser 
and uniform. For both problems the grid in the flow n o d  direction was stretched, with the first cell 
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close to the wall being about O-OOOl m high, the number of cells being 45 for flow (a) and 65 for flow 
@I- 

At each station the tem At (equation (1 1)) was varied from cell to cell, which corresponds to the 
use of a local time step. The magnitude of the time step chosen corresponded to maximum possible 
Courant numbers (CFL in (1 0)). It was found that stable computations were possible with a Courant 
number of 3.0 for the flat plate problem and 1 a 0  for the compression comer flow. At every station a 
number of iterations were carried out till the RMS change in density between successive iterations was 
below 0.0001. 

The boundary conditions emplayed were the standad ones. At the solid wall boundary for both 
problems a no-slip condition (u = v = 0) was imposed together with a zcro-order extrapolation of 
pressme. The wall kmpemtm was forced to be equal to Td and the subsequent wall density 
calculated. At the fmsbeam boundary all the variables were set equal to their fieestream values (i.e. 

The results obtained for the two test cases are presented and discussed in the following subsections. 
%o, "00, Po09 P a J  

4. I. Supersonic f i w  past a f i t  plate 

The test case involves a supersonic flow past a flat plate with a thin leading edge. Features of the 
flow consist of a weak leading edge shock and a laminar boundary layer and the test case is intended to 
bring out the capability of the method to handle the viscous effects. The freestream conditions 
M, = 2.0, ReJL = 1-65 x lo6 m-I, ?b, = ?' = 221 -6 K, Pr = 0-72 and y = 1.4. Computa- 
tions w m  carried out starting h m  the leading edge (x = 0) for a@atc length of unity. 

Computed tangential velocity (u) and temperature (7") profiles at X = 0.9 15 m are shown in Figures 
3 and 4 respectively. The profiles are compared with those obtained by Lawrence et al.' using an 
upwind algorithm based on Roe's scheme. There is overall agreement between the two results. 
However, the present results tend to underpredict the velocities in comparison with Lawrence et al.' At 
the same time the peak temperature predicted close to the wall is slightly lower. 

0 

E 

Figure 3. Computed tangential velocity p 6 k  for supasonic h at i = 0.915 m: -, prrsent; A, L.wrcocc et d? 
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Figure 4. Computed tcmperptun profile for supasonic flow at i = 0.915 m: -, present; A, Lmreace et a1.' 

Figure 5 cornpares the distribution of the wall heat transfer coefficient defined as 
&dl 1 aT c, =- 

PrRe, H y  - 1)M, + 1 - T, r' 
where n denotes the distance normal to the wall. The present method is observed to give slightly higher 
values than Lawrence et a ~ . ~  

It is clear that the present method is capable of handling well the viscous effects in a mrpersonic flow. 
The departun of the present results h m  those of Lawrence et aZ? is perhaps explained by the 
diffmce in the starting conditions used in the two studies. 

Figrat 5 .  Disaibution of wall Cb for supersonic flow: -, PreJent; A, Lpwreace ri al.' 
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-J RESULTANT SHOCK 

L BOUNDAR-LAYER EDGE 

Figure 6. Hypersonic flow test cane 

4.2. Hypersonic f i w  past a compression corner 

This is a very frequently studied computational test case2’3’6”4”9f’ for which the experimentad 
results are also available” and involves a Mach 14.1 flow negotiating a 15” compression corner. The 
flow is schematically sketched in Figure 6 and involves a strong vkcous-inviscid interaction but no 
separation. Owing to the high freestream Mach number, there is a pressure @ent across the 
boundary layer and a leading edge shock. This shock interacts with the compression shock at the 
comer, resulting in a stronger shock, expansion and a slip surface. In addition, them is a thinning of the 
boundary layer due to compression and a consequence increase in pressure and heat transfer following 
the corner. Thus it is a challenge for any code to predict all these featms accurately. The fieeseeam 
conditions for this test case are M, = 14.1, Re,/i = 1-04 x 106 m-I, I! = 0.439 m, ?b, = 72.2 K, 
pd, = 297.0 K and Pr = 0.72. The Freestream temperature is low and real gas effects are not 
expected to be significant. 

Computations for this test cast started at the leading edge x = 0 and were carried out till the 
downstream station x = 2 was reached. The marching method was found to be stable only for values of 
CFL (equation (10)) below unity in regions downstream of the comer. This is probably because of the 
sharp rise in pressure that follows the shock interaction. 

Many interesting features present in the flow along with a strong shock seem to make this example a 
good test case for carxying out grid convergence and other studies. Accordingly, it was computed with 

It was found that the results, particularly the C, distribution, are sensitive to the grid spacing in both 
the x- and ydirections. In the x-direction (i.e. the marching direction) the spacing at the corner where 
the pressure undergoes a steep rise seems to be crucial. Figure 7 shows the effect of the grid spacing 
(Ax) at the comer on the heat transfer rate (C,) distribution and it is clear that the distribution is grid- 
independent for Ax smaller than 0.2 x Higher values of Ax very greatly influence the 
distribution. In the ydkction it is observed that (Figure 8) grid independence is achieved for Ay 
smaller than 6 x lo4. The other feature of interest, namely the C,, distribution along the wall, seemed 
less sensitive to the grid spacing. Convergence histories at a few of the spatial stations are shown in 
Figure 9. As expected, fast convergence is obtained in the flat plate region of the flow closer to the 
leading edge (x  = 0.2) and in regions far downstream of the comer (x  = 1.8). However, in the vicinity 
of the corner (x = 1 -02 and 1.1) it takes many more iterations to conveqe. These computations 
nquired about 1 h CPU time on an IBM RISCdooo machine. 

The grid-independent results obtained for this flow are compared with experiments, those obtained 
with a scalar form of d c a l  dissipation and those of other investigators and discussed below. 

many differtnt grids and the results are summanzed . below. 
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0.5 1 .o 1.5 2.0 1 o4 

Figure 7. Distribution of wall c h  for various values of Ax at the corner 0, Ax = 0.4 x lo-*; 0, Ax = 0.2 x lo-*; 0, 
hr = 0.1 x 10-2; 0, hr = 0.66 10-3 

0.5 1 .o 1.5 2.0 1 o4 

Figure 8. Distribution of wall Ch for various values of Ay at the wall: A, Ay = 0.8 x lo4; 0, Ay = 0.6 x lo-'; 0. 
= 0.4 x 10-4 

Number of Iterations 
F i p  9. convcrgcnce history: 0, a t x  = 0.2; 0, a t x  = 1.8; A, a t x  = 1.02; 0, a t x  = 1 . 1  
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1 o5 
0.4 0.8 1.2 1.6 2.0 

Figure 10. Wd C, dish ion  for hypersonic flow test case: -, ptscat  with matrix dissipation; -.-.-, plescnt with scalar 
dissipation; ----, second-order Roe scheme;’ A, Holden and Moselle” 

0.4 0.8 1.2 1.6 2.0 
Figure 1 1 .  Wd cb distribution for hypmumic flow test case; -, pru3cnt with matrix diesipation; ----, prwent with scalar 

dissipation; - - -, first-ordcr Roe scheme;’ -. -. - , second-order Roe scheme.: A, Holden and Moselle” 

0.0 0.4 0.8 1.2 
Figure 12. Similarity solution for hypmonic flow t a t  case: -, present; A, hypcrsOnc similarity 
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1 .o 1.5 2.0 

1 .o 1.5 2.0 
Figure 13. Computed C, contours for hypaeonic flow teat case (contour interval 0.01): top; using scalar form of artificial 

dissipation; bo- wing autrix form of dfical dissipation 

Figures 10 and 1 1 compare the computed wall pressure coefficient (defined as C, = pwd/pcrO(l&) 
and wall heat transfer coefficient c h  respectively. Upsteam of the comer the experimental results show 
a dip, which is typically due to the upstream influence which the present spatial marching method does 
not handle. However, this dip does not seem to influence the solution in other regions of the flow. The 
general trends in the two distributions are capaued well, including the position where the maximum C, 
or c h  occurs after the corner. However, there is an overprediction of both thetx coe5cients even in the 
flat plate region upstream of the comer. It may be pointed out that such an overprediction occurs even 
in the results of Lawrtnce et 01.: Korte and McRae3 and Harvey et al.’ It is worth noting that Rudy et 
al.” were able to obtain better agreement with experiments after introducing an anglesf-attack 
correction. 

The form of the artificial dissipation t e r n  used (scalar or matrix) does not seem to influence 
substantially the c h  distribution or the C, distribution. Comparing the present results with those of 
Lawrence et al? who have used Roe’s first- and second-order schemes,” we observe good agreemtnt 
in the C, distribution. However, the C,, distribution indicates that the present method overpredicts the 
heat transfer rates. 

A check was made in the present study to find out how far the present results agreed with the 
hypersonic similarity solution. The theoretical pressure distribution along the flat portion of the 
geometry was calculated using the similarity principle22 and is compared with the present results in 
Figure 12. Good agreemeat is evident, suggesting that the conditions in the experiments may not have 
been strictly two-dimensional. 

Figures 13 and 14 show the contours of C, (drawn at 0-01 intervals) and Mach number (drawn at 0.5 
intervals) for the flow respectively. The C, contours clearly reveal the interaction, showing the resulting 
shock and expansion fan. The Mach number contours clearly show that slip surface produced after the 
interaction. These results are seen to be markedly better than the ones given by the earlier version of 
the method using a scalar form of artificial dissipation, which tends to smear quite a few of the details. 

Thus is seems that the present method is capable of adequately resolving the features of a strong 
hypersonic i n w t i o n .  The method, though tested here for twodimensional flows, is expected to be 
very efficient for three-dimensional flows. 
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1 .o 1.5 2.0 

1 .o 1.5 2.0 

Figwe 14. Computed Me& number amtours fa hypersonic flow tat case (contau mtanl0.5): top, using scalar form of 
artificial dissipation; haa4Q using mabix form of artificial dissipatioa 

5 .  CONCLUSIONS 

A spatial marching method using the Runge-Kutta integration scheme has been developed for high- 
speed flows. Utilizing finite volumes, the method solves the Reduced Navier-Stokes equations. For 
stability near shocks and to imprwe the convergence behaviour, a matrix finm of the dissipation terms 
is employed. Two test cases were computed using the method and the computed results are in 
agreement with other computed and experimental results. The method is expected to be very efficient 
for threedimensional flows. 

ACKNOWLEDGEMEhTS 

Thanks are due to Dr. D. J. Auld, Mr. D. M. Newman and Mr. C. Mellen for their help in the production 
of the manuscript. 

APPENDIX: NOMENCLATURE 

area 
heat transfer coefficient 
coefficient of pressure 
tenns in expression for dissipation 
dissipation term 
total energy 
inviscid and viscous fluxes in x-direction 
inviscid and viscous fluxes in ydirection 
index to denote marching direction 
index to denote non-marching direction 
coe5cient in RungeKutta procedure 
local streamwise Mach number 
freestream Mach number 

h d t l  number 
heat transfer terms in x- and ydirections 
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Re, freestream Reynolds number 

11, v 
W 

T temperatun 
velocity components in x- and y-directions 
anay defined in equation (1) 

Gmek letters 

cc ViSCOSity 
oxx, oyy, rXy stress components 
P density 
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